Nuprl Lemma : csm+-comp-m
∀[H,K:j⊢]. ∀[tau:K j⟶ H].  (m o tau++ = tau+ o m ∈ K.𝕀.𝕀 ij⟶ H.𝕀)
Proof
Definitions occuring in Statement : 
csm-m: m
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
uimplies: b supposing a
, 
cubical_set: CubicalSet
, 
ps_context: __⊢
, 
cat-functor: Functor(C1;C2)
, 
I_cube: A(I)
, 
cube-context-adjoin: X.A
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-m: m
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
cc-adjoin-cube: (v;u)
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
Lemmas referenced : 
csm-equal, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-comp_wf, 
csm+_wf_interval, 
subtype_rel_self, 
cube_set_map_wf, 
csm-m_wf, 
cube-set-map-subtype, 
I_cube_wf, 
fset_wf, 
nat_wf, 
functor-ob_wf, 
op-cat_wf, 
cube-cat_wf, 
type-cat_wf, 
cat-functor_wf, 
cat-ob_wf, 
I_cube_pair_redex_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
functionExtensionality, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
Error :memTop, 
productElimination
Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].    (m  o  tau++  =  tau+  o  m)
Date html generated:
2020_05_20-PM-04_43_07
Last ObjectModification:
2020_04_10-AM-11_25_32
Theory : cubical!type!theory
Home
Index