Nuprl Lemma : csm-m_wf

[Gamma:j⊢]. (m ∈ Gamma.𝕀.𝕀 j⟶ Gamma.𝕀)


Proof




Definitions occuring in Statement :  csm-m: m interval-type: 𝕀 cube-context-adjoin: X.A cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) type-cat: TypeCat cat-arrow: cat-arrow(C) op-cat: op-cat(C) cat-ob: cat-ob(C) cube-cat: CubeCat spreadn: spread4 pi2: snd(t) pi1: fst(t) csm-m: m cube-context-adjoin: X.A functor-ob: ob(F) all: x:A. B[x] cat-comp: cat-comp(C) functor-arrow: arrow(F) compose: g cc-adjoin-cube: (v;u) interval-presheaf: 𝕀 subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] interval-type: 𝕀 cubical-type-ap-morph: (u f) constant-cubical-type: (X) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_cube_pair_redex_lemma cube_set_restriction_pair_lemma cubical_set_wf lattice-meet_wf dM_wf I_cube_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf nat_wf cube-set-restriction_wf squash_wf true_wf istype-universe dM-lift-meet dM-lift_wf2 subtype_rel_self iff_weakening_equal names-hom_wf pi1_wf_top top_wf pi2_wf interval-type-at
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis hypothesisEquality universeIsType instantiate because_Cache functionExtensionality productElimination dependent_pairEquality_alt isectElimination applyEquality inhabitedIsType productEquality cumulativity lambdaEquality_alt independent_isectElimination isectEquality lambdaFormation_alt imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination functionIsType equalityIstype productIsType independent_pairEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  (m  \mmember{}  Gamma.\mBbbI{}.\mBbbI{}  j{}\mrightarrow{}  Gamma.\mBbbI{})



Date html generated: 2020_05_20-PM-04_41_53
Last ObjectModification: 2020_04_13-PM-01_25_51

Theory : cubical!type!theory


Home Index