Nuprl Lemma : csm-cubical-id-equiv

[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G ⊢ _}].  ((IdEquiv(G;A))tau IdEquiv(K;(A)tau) ∈ {K ⊢ _:Equiv((A)tau;(A)tau)})


Proof




Definitions occuring in Statement :  cubical-id-equiv: IdEquiv(X;T) cubical-equiv: Equiv(T;A) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term-at: u(a) cubical-id-equiv: IdEquiv(X;T) equiv-witness: equiv-witness(f;cntr) cubical-id-fun: cubical-id-fun(X) cc-snd: q cubical-lam: cubical-lam(X;b) cubical-lambda: b) cc-adjoin-cube: (v;u) csm-ap-term: (t)s pi2: snd(t) cubical-equiv: Equiv(T;A) squash: T prop: subtype_rel: A ⊆B all: x:A. B[x] true: True uimplies: supposing a cubical-type: {X ⊢ _} csm-ap-type: (AF)s csm-id-adjoin: [u] cc-fst: p csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) pi1: fst(t)
Lemmas referenced :  csm-cubical-pair cubical-term-at_wf squash_wf true_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical-sigma_wf cubical-fun_wf csm-ap-type_wf is-cubical-equiv_wf cube-context-adjoin_wf cc-fst_wf cc-snd_wf-cubical-fun cubical-pair_wf csm-id-adjoin_wf cubical-id-fun_wf cubical-term-equal cubical-equiv_wf cubical-id-equiv_wf cube_set_map_wf cubical_set_wf csm-is-cubical-equiv csm-cubical-id-is-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis applyEquality lambdaEquality_alt imageElimination hypothesisEquality equalityTransitivity universeIsType instantiate because_Cache dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType setElimination rename productElimination hyp_replacement

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].    ((IdEquiv(G;A))tau  =  IdEquiv(K;(A)tau))



Date html generated: 2020_05_20-PM-03_34_22
Last ObjectModification: 2020_04_07-PM-05_56_55

Theory : cubical!type!theory


Home Index