Nuprl Lemma : csm-is-cubical-equiv

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[Z:j⊢]. ∀[s:Z j⟶ X].
  ((IsEquiv(T;A;w))s IsEquiv((T)s;(A)s;(w)s) ∈ {Z ⊢ _})


Proof




Definitions occuring in Statement :  is-cubical-equiv: IsEquiv(T;A;w) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-cubical-equiv: IsEquiv(T;A;w) squash: T prop: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g cubical-type: {X ⊢ _} cc-snd: q csm-ap-type: (AF)s cc-fst: p csm-comp: F csm-ap: (s)x
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe cubical-type_wf csm-cubical-pi contractible-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-fiber_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cubical-fun_wf csm-cubical-fun cubical-term-eqcd cc-snd_wf cubical-pi_wf subtype_rel_self iff_weakening_equal cube_set_map_wf istype-cubical-term cubical_set_wf csm-contractible-type cubical-term_wf csm-adjoin_wf csm-comp_wf csm-cubical-fiber csm-ap-type-fst-adjoin csm_ap_term_fst_adjoin_lemma csm-ap-comp-type csm-ap-comp-term csm-ap-term-snd-adjoin
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality dependent_functionElimination because_Cache sqequalRule independent_isectElimination hyp_replacement natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType setElimination rename Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[Z:j\mvdash{}].  \mforall{}[s:Z  j{}\mrightarrow{}  X].
    ((IsEquiv(T;A;w))s  =  IsEquiv((T)s;(A)s;(w)s))



Date html generated: 2020_05_20-PM-03_25_31
Last ObjectModification: 2020_04_19-PM-01_56_00

Theory : cubical!type!theory


Home Index