Nuprl Lemma : csm-pi_comp
∀[X,Y,tau,A,cA,cB:Top].  ((pi_comp(X;A;cA;cB))tau ~ pi_comp(Y;(A)tau;(cA)tau;(cB)tau+))
Proof
Definitions occuring in Statement : 
pi_comp: pi_comp(X;A;cA;cB), 
csm-comp-structure: (cA)tau, 
csm+: tau+, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
csm-comp-structure: (cA)tau, 
pi_comp: pi_comp(X;A;cA;cB), 
let: let, 
cubical-lambda: (λb), 
comp_term: comp cA [phi ⟶ u] a0, 
csm-ap-type: (AF)s, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
csm-ap: (s)x, 
csm-comp: G o F, 
compose: f o g, 
csm-id-adjoin: [u], 
csm-adjoin: (s;u), 
csm-id: 1(X), 
interval-1: 1(𝕀), 
dM1: 1, 
lattice-1: 1, 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
fset-singleton: {x}, 
cons: [a / b], 
empty-fset: {}, 
nil: [], 
it: ⋅, 
cc-fst: p, 
csm+: tau+, 
cc-snd: q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
pi2: snd(t), 
pi1: fst(t), 
csm-ap-term: (t)s, 
revfill: revfill(Gamma;cA;a1), 
rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1)
Lemmas referenced : 
top_wf, 
lifting-strict-spread, 
strict4-spread, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[X,Y,tau,A,cA,cB:Top].    ((pi\_comp(X;A;cA;cB))tau  \msim{}  pi\_comp(Y;(A)tau;(cA)tau;(cB)tau+))
Date html generated:
2017_10_05-AM-07_15_01
Last ObjectModification:
2017_07_28-AM-10_48_06
Theory : cubical!type!theory
Home
Index