Nuprl Lemma : discrete-cubical-term-is-constant-on-irr-face

Not every term of discrete cubical type is constant, but when the
context is the formal-cube(I) -- Yoneda(I) -- then it is.⋅

[T:Type]. ∀[I:fset(ℕ)]. ∀[as,bs:fset(names(I))].
  ∀[t:{I,irr_face(I;as;bs) ⊢ _:discr(T)}]. (t discr(t(irr-face-morph(I;as;bs))) ∈ {I,irr_face(I;as;bs) ⊢ _:discr(T)}) 
  supposing ↑fset-disjoint(NamesDeq;as;bs)


Proof




Definitions occuring in Statement :  discrete-cubical-term: discr(t) discrete-cubical-type: discr(T) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-subset: I,psi irr-face-morph: irr-face-morph(I;as;bs) irr_face: irr_face(I;as;bs) names-deq: NamesDeq names: names(I) fset-disjoint: fset-disjoint(eq;as;bs) fset: fset(T) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q prop: subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 cubical-term-at: u(a) discrete-cubical-term: discr(t) implies:  Q
Lemmas referenced :  discrete-cubical-term-is-map irr-face-morph_wf irr-face-morph-satisfies name-morph-satisfies_wf irr_face_wf discrete-map-is-constant2 subtype_rel_self I_cube_wf face-presheaf_wf2 istype-cubical-term cubical-subset_wf discrete-cubical-type_wf istype-assert fset-disjoint_wf names_wf names-deq_wf fset_wf nat_wf istype-universe irr-face-morph-property names-hom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache productElimination dependent_set_memberEquality_alt hypothesis independent_isectElimination universeIsType instantiate cumulativity applyEquality sqequalRule equalityTransitivity equalitySymmetry isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeEquality lambdaFormation_alt independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].
    \mforall{}[t:\{I,irr\_face(I;as;bs)  \mvdash{}  \_:discr(T)\}].  (t  =  discr(t(irr-face-morph(I;as;bs)))) 
    supposing  \muparrow{}fset-disjoint(NamesDeq;as;bs)



Date html generated: 2020_05_20-PM-02_32_14
Last ObjectModification: 2020_04_20-PM-01_45_57

Theory : cubical!type!theory


Home Index