Nuprl Lemma : irr-face-morph-property
∀[I:fset(ℕ)]. ∀[as,bs:fset(names(I))]. ∀[J:fset(ℕ)]. ∀[g:J ⟶ I].
  ((irr_face(I;as;bs) g) = 1 ⇒ (g = irr-face-morph(I;as;bs) ⋅ g ∈ J ⟶ I))
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1, 
irr-face-morph: irr-face-morph(I;as;bs), 
irr_face: irr_face(I;as;bs), 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
names: names(I), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
names-hom: I ⟶ J, 
compose: f o g, 
irr-face-morph: irr-face-morph(I;as;bs), 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True
Lemmas referenced : 
satisfies-irr-face, 
nh-comp-sq, 
deq-fset-member_wf, 
names_wf, 
names-deq_wf, 
eqtt_to_assert, 
assert-deq-fset-member, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
fset-member_wf, 
dM-lift-inc, 
name-morph-satisfies_wf, 
irr_face_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift_wf2, 
dM0_wf, 
subtype_rel_self, 
iff_weakening_equal, 
dM-lift-0, 
dM1_wf, 
dM-lift-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
functionExtensionality, 
Error :memTop, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
lambdaEquality_alt, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
applyEquality, 
imageElimination, 
universeEquality, 
productEquality, 
isectEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].
    ((irr\_face(I;as;bs)  g)  =  1  {}\mRightarrow{}  (g  =  irr-face-morph(I;as;bs)  \mcdot{}  g))
Date html generated:
2020_05_20-PM-01_45_12
Last ObjectModification:
2019_12_27-AM-00_27_42
Theory : cubical!type!theory
Home
Index