Nuprl Lemma : satisfies-irr-face
∀[I,J:fset(ℕ)]. ∀[as,bs:fset(names(I))]. ∀[g:J ⟶ I].
  uiff((irr_face(I;as;bs) g) = 1;(∀a:names(I). (a ∈ as 
⇒ ((g a) = 0 ∈ Point(dM(J)))))
  ∧ (∀b:names(I). (b ∈ bs 
⇒ ((g b) = 1 ∈ Point(dM(J))))))
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1
, 
irr_face: irr_face(I;as;bs)
, 
names-hom: I ⟶ J
, 
dM1: 1
, 
dM0: 0
, 
dM: dM(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
irr_face: irr_face(I;as;bs)
, 
name-morph-satisfies: (psi f) = 1
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
names-hom: I ⟶ J
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
true: True
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
squash: ↓T
, 
bdd-lattice: BoundedLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
exists: ∃x:A. B[x]
, 
compose: f o g
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
cand: A c∧ B
, 
dM0: 0
, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
insert: insert(a;L)
, 
eval_list: eval_list(t)
, 
deq-member: x ∈b L
, 
lattice-join: a ∨ b
, 
opposite-lattice: opposite-lattice(L)
, 
so_lambda: λ2x y.t[x; y]
, 
lattice-meet: a ∧ b
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
lattice-fset-meet: /\(s)
, 
dM1: 1
Lemmas referenced : 
names-hom_wf, 
fset_wf, 
names_wf, 
nat_wf, 
lattice-fset-meet-is-1, 
fset-member_wf, 
names-deq_wf, 
lattice-point_wf, 
face_lattice_wf, 
face_lattice-deq_wf, 
fset-image_wf, 
fl0_wf, 
fl1_wf, 
dM_wf, 
dM0_wf, 
dM1_wf, 
iff_weakening_uiff, 
equal_wf, 
lattice-fset-meet_wf, 
decidable__equal_face_lattice, 
all_wf, 
rev_implies_wf, 
lattice-meet_wf, 
lattice-1_wf, 
lattice-meet-eq-1, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-join_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl-morph_wf, 
fset-union_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-fset-meet-union, 
subtype_rel_self, 
iff_weakening_equal, 
fl-morph-fset-meet, 
decidable_wf, 
bdd-lattice_wf, 
fset-image-union, 
deq_wf, 
fset-image-compose, 
compose_wf, 
exists_wf, 
member-fset-image-iff, 
fl-morph-fl0, 
dM-to-FL_wf, 
dm-neg_wf, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
dM-to-FL-eq-1, 
dm-neg-neg, 
fl-morph-fl1, 
dM-to-FL-dM1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
hypothesis, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
universeIsType, 
extract_by_obid, 
because_Cache, 
independent_pairFormation, 
lambdaFormation_alt, 
productIsType, 
functionIsType, 
applyEquality, 
equalityIsType1, 
independent_isectElimination, 
independent_functionElimination, 
functionEquality, 
promote_hyp, 
productEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation_alt, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].  \mforall{}[g:J  {}\mrightarrow{}  I].
    uiff((irr\_face(I;as;bs)  g)  =  1;(\mforall{}a:names(I).  (a  \mmember{}  as  {}\mRightarrow{}  ((g  a)  =  0)))
    \mwedge{}  (\mforall{}b:names(I).  (b  \mmember{}  bs  {}\mRightarrow{}  ((g  b)  =  1))))
Date html generated:
2019_11_04-PM-05_35_07
Last ObjectModification:
2018_11_08-AM-11_07_40
Theory : cubical!type!theory
Home
Index