Nuprl Lemma : satisfies-irr-face

[I,J:fset(ℕ)]. ∀[as,bs:fset(names(I))]. ∀[g:J ⟶ I].
  uiff((irr_face(I;as;bs) g) 1;(∀a:names(I). (a ∈ as  ((g a) 0 ∈ Point(dM(J)))))
  ∧ (∀b:names(I). (b ∈ bs  ((g b) 1 ∈ Point(dM(J))))))


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 irr_face: irr_face(I;as;bs) names-hom: I ⟶ J dM1: 1 dM0: 0 dM: dM(I) names-deq: NamesDeq names: names(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T irr_face: irr_face(I;as;bs) name-morph-satisfies: (psi f) 1 uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B names-hom: I ⟶ J so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice true: True DeMorgan-algebra: DeMorganAlgebra guard: {T} squash: T bdd-lattice: BoundedLattice bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) exists: x:A. B[x] compose: g lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt cand: c∧ B dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-1: 1 fset-singleton: {x} cons: [a b] fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) dM1: 1
Lemmas referenced :  names-hom_wf fset_wf names_wf nat_wf lattice-fset-meet-is-1 fset-member_wf names-deq_wf lattice-point_wf face_lattice_wf face_lattice-deq_wf fset-image_wf fl0_wf fl1_wf dM_wf dM0_wf dM1_wf iff_weakening_uiff equal_wf lattice-fset-meet_wf decidable__equal_face_lattice all_wf rev_implies_wf lattice-meet_wf lattice-1_wf lattice-meet-eq-1 subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-join_wf bdd-distributive-lattice-subtype-bdd-lattice fl-morph_wf fset-union_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf squash_wf true_wf istype-universe lattice-fset-meet-union subtype_rel_self iff_weakening_equal fl-morph-fset-meet decidable_wf bdd-lattice_wf fset-image-union deq_wf fset-image-compose compose_wf exists_wf member-fset-image-iff fl-morph-fl0 dM-to-FL_wf dm-neg_wf subtype_rel-equal free-DeMorgan-lattice_wf dM-to-FL-eq-1 dm-neg-neg fl-morph-fl1 dM-to-FL-dM1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality_alt isectElimination hypothesisEquality lambdaEquality_alt dependent_functionElimination axiomEquality hypothesis functionIsTypeImplies inhabitedIsType isectIsTypeImplies universeIsType extract_by_obid because_Cache independent_pairFormation lambdaFormation_alt productIsType functionIsType applyEquality equalityIsType1 independent_isectElimination independent_functionElimination functionEquality promote_hyp productEquality instantiate cumulativity equalityTransitivity equalitySymmetry setElimination rename natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed dependent_pairFormation_alt applyLambdaEquality hyp_replacement

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[as,bs:fset(names(I))].  \mforall{}[g:J  {}\mrightarrow{}  I].
    uiff((irr\_face(I;as;bs)  g)  =  1;(\mforall{}a:names(I).  (a  \mmember{}  as  {}\mRightarrow{}  ((g  a)  =  0)))
    \mwedge{}  (\mforall{}b:names(I).  (b  \mmember{}  bs  {}\mRightarrow{}  ((g  b)  =  1))))



Date html generated: 2019_11_04-PM-05_35_07
Last ObjectModification: 2018_11_08-AM-11_07_40

Theory : cubical!type!theory


Home Index