Nuprl Lemma : dM-to-FL-eq-1

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  uiff(dM-to-FL(I;x) 1 ∈ Point(face_lattice(I));x 1 ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) dM: dM(I) lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra guard: {T} all: x:A. B[x] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q dM: dM(I) top: Top free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) dminc: <i> dM_inc: <x> dmopp: <1-i> dM_opp: <1-x> empty-fset: {} lattice-fset-join: \/(s) not: ¬A false: False bdd-lattice: BoundedLattice or: P ∨ Q lattice-fset-meet: /\(s) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b]
Lemmas referenced :  equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf dM-to-FL_wf lattice-1_wf bdd-distributive-lattice_wf dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf fset_wf nat_wf dM-hom-basis bdd-distributive-lattice-subtype-bdd-lattice fl-deq_wf dM-to-FL-is-hom subtype_rel-equal bounded-lattice-hom_wf free-DeMorgan-lattice_wf names_wf names-deq_wf squash_wf true_wf free-dma-hom-is-lattice-hom iff_weakening_equal dM-basis dM-point deq-implies free-dl-point deq-fset_wf union-deq_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2 fset-induction lattice-fset-join_wf fset-image_wf lattice-fset-meet_wf dM_inc_wf dM_opp_wf dminc_wf dmopp_wf sq_stable__all sq_stable__equal reduce_nil_lemma lattice-0_wf fset-image-empty face-lattice-0-not-1 fset-add_wf not_wf fset-member_wf all_wf decidable_wf bdd-lattice_wf fset-image-add fset-singleton_wf lattice-fset-join-union lattice-fset-join-singleton face_lattice-1-join-irreducible empty-fset_wf lattice-fset-meet-union lattice-fset-meet-singleton lattice-meet-eq-1 dM-to-FL-inc false_wf fl1-not-1 dM-to-FL-opp fl0-not-1 lattice-join-1 lattice-1-join dM-to-FL-properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination setElimination rename productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination voidElimination voidEquality unionEquality setEquality functionEquality unionElimination lambdaFormation equalityUniverse levelHypothesis hyp_replacement applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    uiff(dM-to-FL(I;x)  =  1;x  =  1)



Date html generated: 2017_10_05-AM-01_12_20
Last ObjectModification: 2017_07_28-AM-09_30_23

Theory : cubical!type!theory


Home Index