Nuprl Lemma : dM-to-FL-eq-1
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))].  uiff(dM-to-FL(I;x) = 1 ∈ Point(face_lattice(I));x = 1 ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z)
, 
face_lattice: face_lattice(I)
, 
dM: dM(I)
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
dM: dM(I)
, 
top: Top
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
dminc: <i>
, 
dM_inc: <x>
, 
dmopp: <1-i>
, 
dM_opp: <1-x>
, 
empty-fset: {}
, 
lattice-fset-join: \/(s)
, 
not: ¬A
, 
false: False
, 
bdd-lattice: BoundedLattice
, 
or: P ∨ Q
, 
lattice-fset-meet: /\(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
dM-to-FL_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf, 
dM-hom-basis, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl-deq_wf, 
dM-to-FL-is-hom, 
subtype_rel-equal, 
bounded-lattice-hom_wf, 
free-DeMorgan-lattice_wf, 
names_wf, 
names-deq_wf, 
squash_wf, 
true_wf, 
free-dma-hom-is-lattice-hom, 
iff_weakening_equal, 
dM-basis, 
dM-point, 
deq-implies, 
free-dl-point, 
deq-fset_wf, 
union-deq_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-set2, 
fset-induction, 
lattice-fset-join_wf, 
fset-image_wf, 
lattice-fset-meet_wf, 
dM_inc_wf, 
dM_opp_wf, 
dminc_wf, 
dmopp_wf, 
sq_stable__all, 
sq_stable__equal, 
reduce_nil_lemma, 
lattice-0_wf, 
fset-image-empty, 
face-lattice-0-not-1, 
fset-add_wf, 
not_wf, 
fset-member_wf, 
all_wf, 
decidable_wf, 
bdd-lattice_wf, 
fset-image-add, 
fset-singleton_wf, 
lattice-fset-join-union, 
lattice-fset-join-singleton, 
face_lattice-1-join-irreducible, 
empty-fset_wf, 
lattice-fset-meet-union, 
lattice-fset-meet-singleton, 
lattice-meet-eq-1, 
dM-to-FL-inc, 
false_wf, 
fl1-not-1, 
dM-to-FL-opp, 
fl0-not-1, 
lattice-join-1, 
lattice-1-join, 
dM-to-FL-properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
unionEquality, 
setEquality, 
functionEquality, 
unionElimination, 
lambdaFormation, 
equalityUniverse, 
levelHypothesis, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    uiff(dM-to-FL(I;x)  =  1;x  =  1)
Date html generated:
2017_10_05-AM-01_12_20
Last ObjectModification:
2017_07_28-AM-09_30_23
Theory : cubical!type!theory
Home
Index