Nuprl Lemma : face-lattice-0-not-1

[J:fset(ℕ)]. (0 1 ∈ Point(face_lattice(J))))


Proof




Definitions occuring in Statement :  face_lattice: face_lattice(I) lattice-0: 0 lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: lattice-1: 1 fset-singleton: {x} cons: [a b] guard: {T} all: x:A. B[x] squash: T uiff: uiff(P;Q) top: Top
Lemmas referenced :  equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf fset_wf nat_wf fl-point names_wf names-deq_wf subtype_rel_weakening face-lattice_wf assert_wf fset-antichain_wf union-deq_wf all_wf fset-member_wf deq-fset_wf not_wf member-fset-singleton empty-fset_wf mem_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity universeEquality independent_isectElimination setElimination rename dependent_functionElimination setEquality unionEquality functionEquality inlEquality inrEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination productElimination equalitySymmetry hyp_replacement isect_memberEquality voidEquality

Latex:
\mforall{}[J:fset(\mBbbN{})].  (\mneg{}(0  =  1))



Date html generated: 2017_10_05-AM-01_10_00
Last ObjectModification: 2017_07_28-AM-09_29_37

Theory : cubical!type!theory


Home Index