Nuprl Lemma : dM-hom-basis
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))]. ∀[l:BoundedLattice].
  ∀eq:EqDecider(Point(l)). ∀[h:Hom(dM(I);l)]. ((h x) = \/(λs./\(λx.(h free-dl-inc(x))"(s))"(x)) ∈ Point(l))
Proof
Definitions occuring in Statement : 
dM: dM(I), 
names-deq: NamesDeq, 
names: names(I), 
free-dl-inc: free-dl-inc(x), 
lattice-fset-join: \/(s), 
lattice-fset-meet: /\(s), 
bounded-lattice-hom: Hom(l1;l2), 
bdd-lattice: BoundedLattice, 
lattice-point: Point(l), 
fset-image: f"(s), 
deq-fset: deq-fset(eq), 
fset: fset(T), 
union-deq: union-deq(A;B;a;b), 
deq: EqDecider(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
prop: ℙ, 
squash: ↓T, 
top: Top, 
true: True, 
subtype_rel: A ⊆r B, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
bdd-lattice: BoundedLattice, 
and: P ∧ Q, 
guard: {T}, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
implies: P ⇒ Q, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dml-deq: free-dml-deq(T;eq), 
lattice-point: Point(l), 
record-select: r.x, 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
compose: f o g
Lemmas referenced : 
dM-basis, 
equal_wf, 
squash_wf, 
true_wf, 
dM-point, 
bounded-lattice-hom_wf, 
dM_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
DeMorgan-algebra-structure-subtype, 
deq_wf, 
lattice-point_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
bdd-lattice_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_transitivity, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf, 
free-DeMorgan-lattice_wf, 
names_wf, 
names-deq_wf, 
bdd-distributive-lattice_wf, 
mk-DeMorgan-algebra-equal-bounded-lattice, 
lattice-hom-fset-join, 
bdd-distributive-lattice-subtype-bdd-lattice, 
free-dml-deq_wf, 
lattice-hom-fset-meet, 
deq-implies, 
iff_weakening_equal, 
lattice-fset-join_wf, 
fset-image_wf, 
deq-fset_wf, 
union-deq_wf, 
lattice-fset-meet_wf, 
free-dl-inc_wf, 
all_wf, 
decidable_wf, 
fset-image-compose, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
subtype_rel-equal, 
free-dl-point
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
applyLambdaEquality, 
applyEquality, 
setElimination, 
rename, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productEquality, 
cumulativity, 
dependent_functionElimination, 
axiomEquality, 
independent_functionElimination, 
productElimination, 
unionEquality, 
setEquality, 
functionEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].  \mforall{}[l:BoundedLattice].
    \mforall{}eq:EqDecider(Point(l)).  \mforall{}[h:Hom(dM(I);l)].  ((h  x)  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.(h  free-dl-inc(x))"(s))"(x)))
Date html generated:
2017_10_05-AM-01_00_18
Last ObjectModification:
2017_07_28-AM-09_25_42
Theory : cubical!type!theory
Home
Index