Nuprl Lemma : lattice-fset-join_wf
∀[l:BoundedLattice]. ((∀x,y:Point(l).  Dec(x = y ∈ Point(l))) ⇒ (∀[s:fset(Point(l))]. (\/(s) ∈ Point(l))))
Proof
Definitions occuring in Statement : 
lattice-fset-join: \/(s), 
bdd-lattice: BoundedLattice, 
lattice-point: Point(l), 
fset: fset(T), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
bdd-lattice: BoundedLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
guard: {T}, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
cons: [a / b], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
lattice-fset-join: \/(s), 
bfalse: ff, 
deq: EqDecider(T), 
squash: ↓T, 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
eqof: eqof(d), 
bnot: ¬bb, 
sq_type: SQType(T), 
lattice: Lattice
Lemmas referenced : 
fset_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
bdd-lattice_wf, 
deq-exists, 
list_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
set-equal_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
length_wf, 
non_neg_length, 
subtype_rel-equal, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
add_nat_wf, 
length_wf_nat, 
false_wf, 
le_wf, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
decidable__lt, 
equal-wf-base, 
list-cases, 
product_subtype_list, 
set-equal-nil, 
null_nil_lemma, 
length_of_nil_lemma, 
reduce_nil_lemma, 
lattice-0_wf, 
null_cons_lemma, 
set-equal-cons2, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
squash_wf, 
true_wf, 
length-filter-bnot, 
iff_weakening_equal, 
length_of_cons_lemma, 
list_induction, 
reduce_wf, 
lattice-join_wf, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
reduce_cons_lemma, 
filter_cons_lemma, 
cons_wf, 
filter_nil_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
lattice_wf, 
lattice-join-idempotent, 
lattice_properties, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
productElimination, 
independent_functionElimination, 
rename, 
promote_hyp, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
dependent_set_memberEquality, 
addEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesis_subsumption, 
setEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
functionEquality, 
equalityElimination, 
equalityUniverse, 
levelHypothesis, 
hyp_replacement, 
inlFormation
Latex:
\mforall{}[l:BoundedLattice].  ((\mforall{}x,y:Point(l).    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}[s:fset(Point(l))].  (\mbackslash{}/(s)  \mmember{}  Point(l))))
Date html generated:
2017_10_05-AM-00_33_40
Last ObjectModification:
2017_07_28-AM-09_13_51
Theory : lattices
Home
Index