Nuprl Lemma : fl0-not-1
∀[I:fset(ℕ)]. ∀[x:names(I)].  (¬((x=0) = 1 ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
face_lattice: face_lattice(I)
, 
lattice-1: 1
, 
fl0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
face-lattice0: (x=0)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-point: Point(l)
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
Lemmas referenced : 
rec_select_update_lemma, 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl0_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
names_wf, 
fset_wf, 
nat_wf, 
fset-singletons-equal, 
deq-fset_wf, 
union-deq_wf, 
names-deq_wf, 
fset-singleton_wf, 
empty-fset_wf, 
member-fset-singleton, 
fset-member_wf, 
mem_empty_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_functionElimination, 
isectElimination, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
unionEquality, 
inlEquality, 
productElimination, 
equalitySymmetry, 
hyp_replacement
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (\mneg{}((x=0)  =  1))
Date html generated:
2017_10_05-AM-01_10_50
Last ObjectModification:
2017_07_28-AM-09_29_52
Theory : cubical!type!theory
Home
Index