Nuprl Lemma : free-dma-hom-is-lattice-hom
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:BoundedDistributiveLattice].
  (Hom(free-DeMorgan-lattice(T;eq);dm) = Hom(free-DeMorgan-algebra(T;eq);dm) ∈ Type)
Proof
Definitions occuring in Statement : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
bounded-lattice-hom: Hom(l1;l2), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
true: True, 
subtype_rel: A ⊆r B, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
bounded-lattice-structure: BoundedLatticeStructure, 
record+: record+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
guard: {T}, 
record-select: r.x, 
top: Top, 
eq_atom: x =a y, 
bfalse: ff, 
lattice-point: Point(l), 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
lattice-meet: a ∧ b, 
lattice-join: a ∨ b, 
lattice-1: 1, 
lattice-0: 0, 
record: record(x.T[x]), 
record-update: r[x := v]
Lemmas referenced : 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
deq_wf, 
istype-universe, 
free-DeMorgan-lattice_wf, 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
atom_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
istype-void, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
istype-assert, 
lattice-1_wf, 
lattice-0_wf, 
top_wf, 
subtype_rel_self, 
top-subtype-record
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependentIntersectionEqElimination, 
dependentIntersection_memberEquality, 
functionExtensionality, 
tokenEquality, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
atomEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
cumulativity, 
dependent_functionElimination, 
voidElimination, 
productEquality, 
independent_pairFormation, 
equalityIsType4, 
functionIsType, 
equalityIsType1, 
voidEquality, 
isect_memberEquality, 
lambdaFormation, 
impliesFunctionality, 
functionEquality, 
dependentIntersectionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:BoundedDistributiveLattice].
    (Hom(free-DeMorgan-lattice(T;eq);dm)  =  Hom(free-DeMorgan-algebra(T;eq);dm))
Date html generated:
2019_10_31-AM-07_22_43
Last ObjectModification:
2018_11_10-PM-00_07_10
Theory : lattices
Home
Index