Nuprl Lemma : discrete-function-inv-property

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢]. ∀[b:{X ⊢ _:discr(a:A ⟶ B[a])}].
  (discrete-function(discrete-function-inv(X; b)) b ∈ {X ⊢ _:discr(a:A ⟶ B[a])})


Proof




Definitions occuring in Statement :  discrete-function-inv: discrete-function-inv(X; b) discrete-function: discrete-function(f) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-function-inv: discrete-function-inv(X; b) so_apply: x[s] uimplies: supposing a cubical-lambda: b) discrete-function: discrete-function(f) discrete-cubical-type: discr(T) all: x:A. B[x] cc-adjoin-cube: (v;u) cc-snd: q cubical-term-at: u(a) pi1: fst(t) pi2: snd(t) cubical-term: {X ⊢ _:A} subtype_rel: A ⊆B cubical-type-at: A(a)
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-term-equal discrete-cubical-type_wf cubical-term_wf cubical_set_wf istype-universe cubical_type_at_pair_lemma subtype_rel_self cube-set-restriction-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality applyEquality equalityTransitivity independent_isectElimination universeIsType instantiate cumulativity sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsType universeEquality dependent_functionElimination Error :memTop,  setElimination rename

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[b:\{X  \mvdash{}  \_:discr(a:A  {}\mrightarrow{}  B[a])\}].
    (discrete-function(discrete-function-inv(X;  b))  =  b)



Date html generated: 2020_05_20-PM-03_39_16
Last ObjectModification: 2020_04_06-PM-07_08_29

Theory : cubical!type!theory


Home Index