Nuprl Lemma : discrete-pi-bijection
∀[A:Type]. ∀[B:A ⟶ Type].  ∀X:j⊢. {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])} ~ {X ⊢ _:discr(a:A ⟶ B[a])}
Proof
Definitions occuring in Statement : 
discrete-family: discrete-family(A;a.B[a])
, 
discrete-cubical-type: discr(T)
, 
cubical-pi: ΠA B
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
implies: P 
⇒ Q
, 
surject: Surj(A;B;f)
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
discrete-function_wf, 
cubical_set_cumulativity-i-j, 
cubical-term_wf, 
cubical-pi_wf, 
discrete-cubical-type_wf, 
discrete-family_wf, 
biject_wf, 
cubical_set_wf, 
istype-universe, 
discrete-function-injection, 
discrete-function-inv_wf, 
discrete-function-inv-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
universeIsType, 
hypothesis, 
independent_pairFormation, 
equalityIstype, 
functionEquality, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
universeEquality, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}X:j\mvdash{}.  \{X  \mvdash{}  \_:\mPi{}discr(A)  discrete-family(A;a.B[a])\}  \msim{}  \{X  \mvdash{}  \_:discr(a:A  {}\mrightarrow{}  B[a])\}
Date html generated:
2020_05_20-PM-03_39_44
Last ObjectModification:
2020_04_06-PM-07_09_18
Theory : cubical!type!theory
Home
Index