Nuprl Lemma : empty-context-subset-lemma6

[Gamma:j⊢]. ∀[x,y:Top × Top].  (x y ∈ {Gamma, 0(𝔽) ⊢ _})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-0: 0(𝔽) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q context-subset: Gamma, phi false: False face-0: 0(𝔽) cubical-term-at: u(a) cubical-type: {X ⊢ _} guard: {T} and: P ∧ Q
Lemmas referenced :  istype-top cubical_set_wf I_cube_pair_redex_lemma face-lattice-0-not-1 I_cube_wf context-subset_wf face-0_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesis because_Cache productIsType introduction extract_by_obid universeIsType instantiate thin lambdaFormation_alt sqequalHypSubstitution dependent_functionElimination Error :memTop,  setElimination rename sqequalRule isectElimination hypothesisEquality independent_functionElimination voidElimination dependent_set_memberEquality_alt productElimination dependent_pairEquality_alt functionExtensionality functionIsType applyEquality independent_pairFormation

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[x,y:Top  \mtimes{}  Top].    (x  =  y)



Date html generated: 2020_05_20-PM-04_13_55
Last ObjectModification: 2020_04_10-PM-04_48_22

Theory : cubical!type!theory


Home Index