Nuprl Lemma : empty-cubical-subset-term

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))].
  ∀[X,A,B:Top].  (A B ∈ {I,phi ⊢ _:X}) supposing phi 0 ∈ Point(face_lattice(I))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-subset: I,psi face_lattice: face_lattice(I) lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-term: {X ⊢ _:A} not: ¬A implies:  Q false: False subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: functor-ob(F) pi1: fst(t) face-presheaf: 𝔽 and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] bdd-distributive-lattice: BoundedDistributiveLattice true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  cubical-type-ap-morph_wf cubical-type-at_wf all_wf iff_weakening_equal face-presheaf_wf cubical_set_wf true_wf squash_wf bdd-distributive-lattice_wf lattice-0_wf lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face_lattice_wf lattice-point_wf equal_wf top_wf names-hom_wf nat_wf face-lattice-constraints_wf fset-contains-none_wf fset-all_wf names-deq_wf union-deq_wf fset-antichain_wf assert_wf names_wf fset_wf subtype_rel_self cubical-subset_wf I_cube_wf empty-cubical-subset-I_cube
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality functionExtensionality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination voidElimination applyEquality sqequalRule setEquality unionEquality because_Cache hypothesis productEquality lambdaEquality lambdaFormation isect_memberEquality axiomEquality instantiate cumulativity universeEquality independent_isectElimination setElimination rename equalityTransitivity equalitySymmetry natural_numberEquality imageElimination imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].    \mforall{}[X,A,B:Top].    (A  =  B)  supposing  phi  =  0



Date html generated: 2016_05_18-PM-01_58_11
Last ObjectModification: 2016_01_28-PM-01_20_49

Theory : cubical!type!theory


Home Index