Nuprl Lemma : equiv_comp-apply-sq
∀[H,A,E,cA,cE,I,a,b,c,d:Top].
  (equiv_comp(H;A;E;cA;cE) formal-cube(I) (λx,y. <a[x;y], b[x;y]>) (λK,f. c[K;f]) (λI@0,a. ⋅) (λK,f. d[K;f]) I 1 
  ~ equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d))
Proof
Definitions occuring in Statement : 
equiv_comp_apply: equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d), 
equiv_comp: equiv_comp(H;A;E;cA;cE), 
formal-cube: formal-cube(I), 
nh-id: 1, 
it: ⋅, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
apply: f a, 
lambda: λx.A[x], 
pair: <a, b>, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
formal-cube: formal-cube(I), 
cubical-lambda: (λb), 
let: let, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
equiv_comp_apply: equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d), 
cubical-sigma: Σ A B, 
cubical-fiber: Fiber(w;a), 
top: Top, 
csm-ap: (s)x, 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda4, 
csm-ap-type: (AF)s, 
bfalse: ff, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
equiv_comp-sq, 
sigma_comp-sq, 
pi_comp-sq, 
cube_set_restriction_pair_lemma, 
istype-top, 
contractible_comp-sq, 
strict4-spread, 
lifting-strict-spread, 
fl-eq-0-1-false
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
Error :memTop, 
dependent_functionElimination, 
axiomSqEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
baseClosed
Latex:
\mforall{}[H,A,E,cA,cE,I,a,b,c,d:Top].
    (equiv\_comp(H;A;E;cA;cE)  formal-cube(I)  (\mlambda{}x,y.  <a[x;y],  b[x;y]>)  (\mlambda{}K,f.  c[K;f])  (\mlambda{}I@0,a.  \mcdot{})  (\mlambda{}K,f.\000C  d[K;f])  I  1 
    \msim{}  equiv\_comp\_apply(H;A;E;cA;cE;I;a;b;c;d))
Date html generated:
2020_05_20-PM-07_19_24
Last ObjectModification:
2020_04_27-PM-01_57_05
Theory : cubical!type!theory
Home
Index