Nuprl Lemma : f-subset-add-name1
∀I:fset(ℕ). ∀[J:fset(ℕ)]. ∀i:ℕ. (J ⊆ I 
⇒ J ⊆ I+i)
Proof
Definitions occuring in Statement : 
add-name: I+i
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
f-subset: xs ⊆ ys
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
or: P ∨ Q
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
fset-member-add-name, 
equal_wf, 
fset-member_witness, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
f-subset_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
add-name_wf, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
hypothesis, 
inrFormation, 
isectElimination, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
natural_numberEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}[J:fset(\mBbbN{})].  \mforall{}i:\mBbbN{}.  (J  \msubseteq{}  I  {}\mRightarrow{}  J  \msubseteq{}  I+i)
Date html generated:
2016_05_18-PM-00_00_11
Last ObjectModification:
2015_12_28-PM-03_06_29
Theory : cubical!type!theory
Home
Index