Nuprl Lemma : face-0-or
∀[X:j⊢]. ∀[psi:{X ⊢ _:𝔽}].  ((0(𝔽) ∨ psi) = psi ∈ {X ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-or: (a ∨ b), 
face-0: 0(𝔽), 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
face-0: 0(𝔽), 
face-or: (a ∨ b), 
cubical-term-at: u(a), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a
Lemmas referenced : 
lattice-join-0, 
face_lattice_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
cubical-term-at_wf, 
face-type_wf, 
subtype_rel_self, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
face-or_wf, 
face-0_wf, 
cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
functionExtensionality, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
because_Cache, 
universeIsType, 
independent_isectElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[psi:\{X  \mvdash{}  \_:\mBbbF{}\}].    ((0(\mBbbF{})  \mvee{}  psi)  =  psi)
Date html generated:
2020_05_20-PM-02_41_58
Last ObjectModification:
2020_04_04-PM-04_50_11
Theory : cubical!type!theory
Home
Index