Nuprl Lemma : face-forall-1

[Gamma:j⊢]. ∀[phi:{Gamma.𝕀 ⊢ _:𝔽}].  (Gamma ⊢ ∀ phi) 1(𝔽) ∈ {Gamma ⊢ _:𝔽supposing phi 1(𝔽) ∈ {Gamma.𝕀 ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-1: 1(𝔽) face-type: 𝔽 interval-type: 𝕀 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q face-1: 1(𝔽) face-forall: (∀ phi) cubical-term-at: u(a) all: x:A. B[x] bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽
Lemmas referenced :  face-1_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical-term_wf face-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe face-forall_wf subtype_rel_self iff_weakening_equal I_cube_wf fset_wf nat_wf cubical-term-equal fl_all-1 lattice-1_wf face_lattice_wf cubical-type-at_wf_face-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis equalityIstype inhabitedIsType hypothesisEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination applyEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType because_Cache natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination functionExtensionality dependent_functionElimination Error :memTop,  setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    (Gamma  \mvdash{}  \mforall{}  phi)  =  1(\mBbbF{})  supposing  phi  =  1(\mBbbF{})



Date html generated: 2020_05_20-PM-02_49_59
Last ObjectModification: 2020_04_04-PM-05_03_35

Theory : cubical!type!theory


Home Index