Nuprl Lemma : face-term-distrib1

[Gamma:j⊢]. ∀[a,b,c:{Gamma ⊢ _:𝔽}].  Gamma ⊢ ((a ∧ (b ∨ c)) ⇐⇒ ((a ∧ b) ∨ (a ∧ c)))


Proof




Definitions occuring in Statement :  face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) face-or: (a ∨ b) face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) and: P ∧ Q face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q face-or: (a ∨ b) face-and: (a ∧ b) cubical-term-at: u(a) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  cubical-term_wf face-type_wf cubical_set_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-and_wf face-or_wf subtype_rel_self lattice-1_wf I_cube_wf bdd-distributive-lattice-subtype-bdd-lattice fset_wf nat_wf iff_transitivity iff_weakening_uiff lattice-meet-eq-1 face_lattice-1-join-irreducible
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality_alt dependent_functionElimination hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType instantiate extract_by_obid lambdaFormation_alt equalityIstype applyEquality productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename equalityTransitivity equalitySymmetry unionEquality productIsType unionIsType unionElimination inlFormation_alt independent_pairFormation inrFormation_alt independent_functionElimination promote_hyp

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[a,b,c:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    Gamma  \mvdash{}  ((a  \mwedge{}  (b  \mvee{}  c))  \mLeftarrow{}{}\mRightarrow{}  ((a  \mwedge{}  b)  \mvee{}  (a  \mwedge{}  c)))



Date html generated: 2020_05_20-PM-02_48_58
Last ObjectModification: 2020_04_04-PM-05_02_59

Theory : cubical!type!theory


Home Index