Nuprl Lemma : face-term-distrib3
∀[Gamma:j⊢]. ∀[a,b,c:{Gamma ⊢ _:𝔽}].  Gamma ⊢ (((b ∨ c) ∧ a) ⇐⇒ ((b ∧ a) ∨ (c ∧ a)))
Proof
Definitions occuring in Statement : 
face-term-iff: Gamma ⊢ (phi ⇐⇒ psi), 
face-or: (a ∨ b), 
face-and: (a ∧ b), 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
face-term-iff: Gamma ⊢ (phi ⇐⇒ psi), 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
all: ∀x:A. B[x]
Lemmas referenced : 
face-term-iff_wf, 
face-and_wf, 
face-or_wf, 
face-and-com, 
iff_weakening_equal, 
face-term-distrib1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[a,b,c:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    Gamma  \mvdash{}  (((b  \mvee{}  c)  \mwedge{}  a)  \mLeftarrow{}{}\mRightarrow{}  ((b  \mwedge{}  a)  \mvee{}  (c  \mwedge{}  a)))
Date html generated:
2020_05_20-PM-02_49_20
Last ObjectModification:
2020_04_04-PM-05_03_09
Theory : cubical!type!theory
Home
Index