Nuprl Lemma : face_lattice-hom-equal

[I,J:fset(ℕ)]. ∀[g,h:Hom(face_lattice(I);face_lattice(J))].
  h ∈ Hom(face_lattice(I);face_lattice(J)) 
  supposing (∀x:names(I). ((g (x=0)) (h (x=0)) ∈ Point(face_lattice(J))))
  ∧ (∀x:names(I). ((g (x=1)) (h (x=1)) ∈ Point(face_lattice(J))))


Proof




Definitions occuring in Statement :  fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) names: names(I) bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q face_lattice: face_lattice(I) all: x:A. B[x] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B cand: c∧ B fl1: (x=1) fl0: (x=0) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice so_apply: x[s]
Lemmas referenced :  face-lattice-hom-unique names_wf names-deq_wf face-lattice_wf face_lattice-deq_wf fl0_wf lattice-point_wf face_lattice_wf fl1_wf equal_wf squash_wf true_wf FL-meet-0-1 iff_weakening_equal all_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid dependent_functionElimination isectElimination hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename sqequalRule because_Cache independent_isectElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination independent_pairFormation productEquality instantiate cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[g,h:Hom(face\_lattice(I);face\_lattice(J))].
    g  =  h  supposing  (\mforall{}x:names(I).  ((g  (x=0))  =  (h  (x=0))))  \mwedge{}  (\mforall{}x:names(I).  ((g  (x=1))  =  (h  (x=1))))



Date html generated: 2017_10_05-AM-01_11_05
Last ObjectModification: 2017_07_28-AM-09_30_03

Theory : cubical!type!theory


Home Index