Nuprl Lemma : face_lattice-hom-equal
∀[I,J:fset(ℕ)]. ∀[g,h:Hom(face_lattice(I);face_lattice(J))].
  g = h ∈ Hom(face_lattice(I);face_lattice(J)) 
  supposing (∀x:names(I). ((g (x=0)) = (h (x=0)) ∈ Point(face_lattice(J))))
  ∧ (∀x:names(I). ((g (x=1)) = (h (x=1)) ∈ Point(face_lattice(J))))
Proof
Definitions occuring in Statement : 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
face_lattice: face_lattice(I)
, 
all: ∀x:A. B[x]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_apply: x[s]
Lemmas referenced : 
face-lattice-hom-unique, 
names_wf, 
names-deq_wf, 
face-lattice_wf, 
face_lattice-deq_wf, 
fl0_wf, 
lattice-point_wf, 
face_lattice_wf, 
fl1_wf, 
equal_wf, 
squash_wf, 
true_wf, 
FL-meet-0-1, 
iff_weakening_equal, 
all_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
instantiate, 
cumulativity, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[g,h:Hom(face\_lattice(I);face\_lattice(J))].
    g  =  h  supposing  (\mforall{}x:names(I).  ((g  (x=0))  =  (h  (x=0))))  \mwedge{}  (\mforall{}x:names(I).  ((g  (x=1))  =  (h  (x=1))))
Date html generated:
2017_10_05-AM-01_11_05
Last ObjectModification:
2017_07_28-AM-09_30_03
Theory : cubical!type!theory
Home
Index