Nuprl Lemma : fl_all-id

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[phi:Point(face_lattice(I))].  ((∀i.phi) phi ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  fl_all: (∀i.phi) face_lattice: face_lattice(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl_all: (∀i.phi) squash: T and: P ∧ Q prop: all: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] nat:
Lemmas referenced :  fl-all-hom_wf equal_wf squash_wf true_wf iff_weakening_equal lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyLambdaEquality setElimination rename hypothesis sqequalRule imageMemberEquality baseClosed imageElimination productElimination applyEquality lambdaEquality equalityTransitivity equalitySymmetry universeEquality because_Cache dependent_functionElimination natural_numberEquality independent_isectElimination independent_functionElimination instantiate productEquality cumulativity isect_memberEquality axiomEquality intEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[phi:Point(face\_lattice(I))].    ((\mforall{}i.phi)  =  phi)



Date html generated: 2017_10_05-AM-01_16_08
Last ObjectModification: 2017_07_28-AM-09_32_27

Theory : cubical!type!theory


Home Index