Nuprl Lemma : id-fiber-contraction_wf

[X:j⊢]. ∀[T:{X ⊢ _}].
  (id-fiber-contraction(X;T) ∈ {X.T.Σ (T)p (Path_((T)p)p (q)p q) ⊢ _
                                :(Path_(Σ (T)p (Path_((T)p)p (q)p q))p (id-fiber-center(X;T))p q)})


Proof




Definitions occuring in Statement :  id-fiber-contraction: id-fiber-contraction(X;T) id-fiber-center: id-fiber-center(X;T) path-type: (Path_A b) cubical-sigma: Σ B cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T id-fiber-center: id-fiber-center(X;T) id-fiber-contraction: id-fiber-contraction(X;T) subtype_rel: A ⊆B all: x:A. B[x] prop: squash: T true: True cubical-type: {X ⊢ _} cc-snd: q cc-fst: p csm-ap-term: (t)s csm-ap-type: (AF)s csm-id-adjoin: [u] csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) pi1: fst(t) pi2: snd(t) csm-comp: F compose: g uimplies: supposing a guard: {T} implies:  Q cube-context-adjoin: X.A cubical-pair: cubical-pair(u;v) sigma-unelim-csm: SigmaUnElim cc-adjoin-cube: (v;u) cubical-term-at: u(a)
Lemmas referenced :  id-fiber-center_wf cubical-type_wf cubical_set_wf sigma-elim-rule cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf cubical-sigma_wf csm-path-type sigma-unelim-csm_wf equal_wf squash_wf true_wf istype-universe csm-id-adjoin_wf cubical-term_wf csm_id_adjoin_fst_type_lemma singleton-contraction_wf csm-cubical-sigma subtype_rel_universe1 cubical-type-cumulativity csm-adjoin_wf csm-comp_wf csm-ap-comp-type-sq2 csm-ap-comp-type-sq csm-cubical-pair cubical-pair_wf csm-ap-comp-term-sq2 csm-cubical-refl csm-ap-comp-term-sq I_cube_wf fset_wf nat_wf cubical-term-equal equal_functionality_wrt_subtype_rel2 I_cube_pair_redex_lemma cube_set_restriction_pair_lemma cubical-term-at_wf sigma-unelim-p-type sigma-unelim-p-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache dependent_functionElimination hyp_replacement lambdaEquality_alt imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed setElimination rename productElimination Error :memTop,  applyLambdaEquality functionExtensionality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].
    (id-fiber-contraction(X;T)  \mmember{}  \{X.T.\mSigma{}  (T)p  (Path\_((T)p)p  (q)p  q)  \mvdash{}  \_
                                                                :(Path\_(\mSigma{}  (T)p  (Path\_((T)p)p  (q)p  q))p  (id-fiber-center(X;T))p  q)\})



Date html generated: 2020_05_20-PM-03_31_14
Last ObjectModification: 2020_04_09-AM-10_06_05

Theory : cubical!type!theory


Home Index