Nuprl Lemma : id-fiber-contraction_wf
∀[X:j⊢]. ∀[T:{X ⊢ _}].
  (id-fiber-contraction(X;T) ∈ {X.T.Σ (T)p (Path_((T)p)p (q)p q) ⊢ _
                                :(Path_(Σ (T)p (Path_((T)p)p (q)p q))p (id-fiber-center(X;T))p q)})
Proof
Definitions occuring in Statement : 
id-fiber-contraction: id-fiber-contraction(X;T)
, 
id-fiber-center: id-fiber-center(X;T)
, 
path-type: (Path_A a b)
, 
cubical-sigma: Σ A B
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
id-fiber-center: id-fiber-center(X;T)
, 
id-fiber-contraction: id-fiber-contraction(X;T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
csm-ap-type: (AF)s
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
csm-comp: G o F
, 
compose: f o g
, 
uimplies: b supposing a
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
cube-context-adjoin: X.A
, 
cubical-pair: cubical-pair(u;v)
, 
sigma-unelim-csm: SigmaUnElim
, 
cc-adjoin-cube: (v;u)
, 
cubical-term-at: u(a)
Lemmas referenced : 
id-fiber-center_wf, 
cubical-type_wf, 
cubical_set_wf, 
sigma-elim-rule, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-ap-type_wf, 
cc-fst_wf, 
path-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
cubical-sigma_wf, 
csm-path-type, 
sigma-unelim-csm_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-id-adjoin_wf, 
cubical-term_wf, 
csm_id_adjoin_fst_type_lemma, 
singleton-contraction_wf, 
csm-cubical-sigma, 
subtype_rel_universe1, 
cubical-type-cumulativity, 
csm-adjoin_wf, 
csm-comp_wf, 
csm-ap-comp-type-sq2, 
csm-ap-comp-type-sq, 
csm-cubical-pair, 
cubical-pair_wf, 
csm-ap-comp-term-sq2, 
csm-cubical-refl, 
csm-ap-comp-term-sq, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
equal_functionality_wrt_subtype_rel2, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
cubical-term-at_wf, 
sigma-unelim-p-type, 
sigma-unelim-p-term
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
hyp_replacement, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
productElimination, 
Error :memTop, 
applyLambdaEquality, 
functionExtensionality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].
    (id-fiber-contraction(X;T)  \mmember{}  \{X.T.\mSigma{}  (T)p  (Path\_((T)p)p  (q)p  q)  \mvdash{}  \_
                                                                :(Path\_(\mSigma{}  (T)p  (Path\_((T)p)p  (q)p  q))p  (id-fiber-center(X;T))p  q)\})
Date html generated:
2020_05_20-PM-03_31_14
Last ObjectModification:
2020_04_09-AM-10_06_05
Theory : cubical!type!theory
Home
Index