Nuprl Lemma : isdM1_wf

[I:fset(ℕ)]. ∀[x:Point(dM(I))].  (isdM1(x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  isdM1: isdM1(x) dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top isdM1: isdM1(x) subtype_rel: A ⊆B deq: EqDecider(T) DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s]
Lemmas referenced :  nat_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf empty-fset_wf fset-singleton_wf deq_wf names-deq_wf union-deq_wf names_wf fset_wf deq-fset_wf dM-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename sqequalRule applyEquality unionEquality hypothesisEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry instantiate productEquality independent_isectElimination cumulativity universeEquality because_Cache

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].    (isdM1(x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_18-AM-11_56_56
Last ObjectModification: 2016_02_04-PM-06_16_02

Theory : cubical!type!theory


Home Index