Nuprl Lemma : member-cubical-subset-I_cube
∀[I:fset(ℕ)]. ∀[psi:𝔽(I)]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I].  f ∈ I,psi(J) supposing (psi f) = 1
Proof
Definitions occuring in Statement : 
cubical-subset: I,psi, 
name-morph-satisfies: (psi f) = 1, 
face-presheaf: 𝔽, 
I_cube: A(I), 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
cubical-subset: I,psi, 
I_cube: A(I), 
names-cat: NamesCat, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
functor-ob: functor-ob(F), 
pi1: fst(t), 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
name-morph-satisfies_wf, 
subtype_rel_self, 
fset_wf, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
names-hom_wf, 
nat_wf, 
I_cube_wf, 
face-presheaf_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setEquality, 
unionEquality, 
because_Cache, 
productEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].    f  \mmember{}  I,psi(J)  supposing  (psi  f)  =  1
Date html generated:
2016_05_18-PM-01_36_54
Last ObjectModification:
2015_12_28-PM-02_59_27
Theory : cubical!type!theory
Home
Index