Nuprl Lemma : member-empty-cubical-subset

[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))].
  ∀[X,A:Top].  (A ∈ {I,phi ⊢ _:X}) supposing phi 0 ∈ Point(face_lattice(I))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-subset: I,psi face_lattice: face_lattice(I) lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s]
Lemmas referenced :  nat_wf fset_wf lattice-join_wf lattice-meet_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set bdd-distributive-lattice_wf lattice-0_wf face_lattice_wf lattice-point_wf equal_wf top_wf empty-cubical-subset-term
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache lambdaEquality setElimination rename instantiate productEquality cumulativity universeEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].    \mforall{}[X,A:Top].    (A  \mmember{}  \{I,phi  \mvdash{}  \_:X\})  supposing  phi  =  0



Date html generated: 2016_05_18-PM-01_58_16
Last ObjectModification: 2016_01_28-PM-01_23_59

Theory : cubical!type!theory


Home Index