Nuprl Lemma : member-empty-cubical-subset
∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))].
  ∀[X,A:Top].  (A ∈ {I,phi ⊢ _:X}) supposing phi = 0 ∈ Point(face_lattice(I))
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:A}
, 
cubical-subset: I,psi
, 
face_lattice: face_lattice(I)
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
nat_wf, 
fset_wf, 
lattice-join_wf, 
lattice-meet_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
bdd-distributive-lattice_wf, 
lattice-0_wf, 
face_lattice_wf, 
lattice-point_wf, 
equal_wf, 
top_wf, 
empty-cubical-subset-term
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].    \mforall{}[X,A:Top].    (A  \mmember{}  \{I,phi  \mvdash{}  \_:X\})  supposing  phi  =  0
Date html generated:
2016_05_18-PM-01_58_16
Last ObjectModification:
2016_01_28-PM-01_23_59
Theory : cubical!type!theory
Home
Index