Nuprl Lemma : nc-r'-to-e'

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ].  (f,i=1-j f,i=j ⋅ r_j ∈ J+j ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-r': g,i=1-j nc-e': g,i=j nc-r: r_i add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] all: x:A. B[x] true: True squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-hom_wf fset_wf add-name_wf nc-r'_wf nc-r_wf trivial-member-add-name1 equal_wf nh-id-left iff_weakening_equal squash_wf true_wf nh-comp_wf nc-r'-r nh-comp-assoc r-comp-r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality hypothesisEquality isect_memberEquality axiomEquality setElimination rename dependent_functionElimination imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination universeEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].
    (f,i=1-j  =  f,i=j  \mcdot{}  r\_j)



Date html generated: 2017_10_05-AM-01_06_06
Last ObjectModification: 2017_07_28-AM-09_27_45

Theory : cubical!type!theory


Home Index