Nuprl Lemma : path-term-case1

X:j⊢. ∀psi:{X ⊢ _:𝔽}.
  ∀[r:{X ⊢ _:𝕀}]
    ∀T:{X ⊢ _}. ∀a,b:{X ⊢ _:T}. ∀w:{X, psi ⊢ _:(Path_T b)}.  (path-term(psi;w;a;b;r) r ∈ {X, psi ⊢ _:T})


Proof




Definitions occuring in Statement :  path-term: path-term(phi;w;a;b;r) cubical-path-app: pth r path-type: (Path_A b) context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] path-term: path-term(phi;w;a;b;r) same-cubical-term: X ⊢ u=v:A member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  case-term-equal-left thin-context-subset path-type_wf cubical-term_wf context-subset_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf interval-type_wf face-type_wf cubical_set_wf cubical-path-app_wf context-subset-term-subtype subset-cubical-term2 sub_cubical_set_self subset-cubical-term context-subset-is-subset path-type-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :memTop,  universeIsType instantiate applyEquality sqequalRule because_Cache independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}psi:\{X  \mvdash{}  \_:\mBbbF{}\}.
    \mforall{}[r:\{X  \mvdash{}  \_:\mBbbI{}\}]
        \mforall{}T:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:T\}.  \mforall{}w:\{X,  psi  \mvdash{}  \_:(Path\_T  a  b)\}.    (path-term(psi;w;a;b;r)  =  w  @  r)



Date html generated: 2020_05_20-PM-05_09_30
Last ObjectModification: 2020_04_10-AM-11_40_51

Theory : cubical!type!theory


Home Index