Nuprl Lemma : universe-decode-restriction

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[rho:X(J)].
  (decode(t)(f(rho)) universe-type(t;J;rho)(f(1)) ∈ Type)


Proof




Definitions occuring in Statement :  universe-decode: decode(t) universe-type: universe-type(t;I;a) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type-at: A(a) formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] universe-type: universe-type(t;I;a) universe-decode: decode(t) all: x:A. B[x] member: t ∈ T implies:  Q pi1: fst(t) cubical-universe: c𝕌 closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) closed-type-to-type: closed-type-to-type(T) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] pi2: snd(t) I_cube: A(I) functor-ob: ob(F) formal-cube: formal-cube(I) names-hom: I ⟶ J squash: T context-map: <rho> csm-ap: (s)x functor-arrow: arrow(F) cube-set-restriction: f(s) prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True
Lemmas referenced :  cubical_type_at_pair_lemma cubical-term-at-morph cubical-universe_wf cubical-universe-at cubical-term-at_wf I_cube_wf names-hom_wf fset_wf nat_wf istype-cubical-universe-term cubical_set_wf cubical_type_ap_morph_pair_lemma pi2_wf cubical-type_wf formal-cube_wf1 composition-op_wf cubical-type-cumulativity2 pi1_wf_top csm-ap-type_wf context-map_wf csm-composition_wf cubical-type-at_wf nh-id_wf csm-ap-type-at I_cube_pair_redex_lemma cube_set_restriction_pair_lemma equal_wf squash_wf true_wf istype-universe nh-id-left nh-comp_wf subtype_rel_self iff_weakening_equal nh-id-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis instantiate isectElimination because_Cache hypothesisEquality equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt productElimination equalityIstype independent_functionElimination universeIsType applyLambdaEquality lambdaEquality_alt applyEquality independent_pairEquality dependent_pairEquality_alt imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination natural_numberEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[rho:X(J)].
    (decode(t)(f(rho))  =  universe-type(t;J;rho)(f(1)))



Date html generated: 2020_05_20-PM-07_11_43
Last ObjectModification: 2020_04_25-PM-09_14_20

Theory : cubical!type!theory


Home Index