Nuprl Lemma : geo-cong3-to-conga
∀e:BasicGeometry. ∀a,b,c,d,E,f:Point.
  ((∃a',c',d',f':Point. (out(b a'a) ∧ out(b c'c) ∧ out(E d'd) ∧ out(E f'f) ∧ Cong3(a'bc',d'Ef'))) ⇒ abc ≅a dEf)
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
geo-cong-angle: abc ≅a xyz, 
cand: A c∧ B, 
basic-geometry: BasicGeometry, 
geo-out: out(p ab), 
geo-cong-tri: Cong3(abc,a'b'c'), 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True, 
geo-five-seg-compressed: FSC(a;b;c;d  a';b';c';d'), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m
Lemmas referenced : 
geo-out_wf, 
geo-cong-tri_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep-sym, 
geo-extend-exists, 
geo-between_wf, 
geo-congruent_wf, 
geo-out_inversion, 
geo-cong3-to-conga-aux, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-add-length-between, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
geo-add-length-comm, 
geo-fsc-ap, 
oriented-colinear-append, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
geo-sep_wf, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
geo-out-colinear, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
because_Cache, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
rename, 
dependent_pairFormation_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
inlFormation_alt, 
inrFormation_alt, 
equalityIstype, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,E,f:Point.
    ((\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  out(E  d'd)  \mwedge{}  out(E  f'f)  \mwedge{}  Cong3(a'bc',d'Ef')))
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  dEf)
Date html generated:
2019_10_16-PM-01_28_45
Last ObjectModification:
2018_12_12-PM-02_31_47
Theory : euclidean!plane!geometry
Home
Index