Nuprl Lemma : geo-perp-in-same-colinear
∀[e:BasicGeometry]. ∀[a,b,c,d,x:Point].  (Colinear(x;c;d)) supposing (ab  ⊥x xc and ab  ⊥x xd)
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd, 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
geo-colinear: Colinear(a;b;c), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
stable: Stable{P}, 
or: P ∨ Q, 
geo-eq: a ≡ b, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
euclidean-plane: EuclideanPlane, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
geo-perp-in: ab  ⊥x cd, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
right-angle: Rabc, 
geo-midpoint: a=m=b
Lemmas referenced : 
not_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-perp-in_wf, 
geo-point_wf, 
stable__not, 
false_wf, 
or_wf, 
geo-sep_wf, 
minimal-double-negation-hyp-elim, 
geo-perp-in_functionality, 
geo-eq_weakening, 
minimal-not-not-excluded-middle, 
geo-sep-or, 
symmetric-point-construction, 
geo-sep-sym, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
lelt_wf, 
right-angle-symmetry, 
geo-midpoint-symmetry, 
upper-dimension-axiom, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-between-sep, 
geo-perp-in-not-eq, 
geo-eq-self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
productEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
functionEquality, 
independent_functionElimination, 
lambdaFormation, 
unionElimination, 
productElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
voidEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,d,x:Point].    (Colinear(x;c;d))  supposing  (ab    \mbot{}x  xc  and  ab    \mbot{}x  xd)
Date html generated:
2018_05_22-PM-00_05_26
Last ObjectModification:
2018_05_11-PM-06_45_17
Theory : euclidean!plane!geometry
Home
Index