Nuprl Lemma : geo-tar-opp-side-invariant
∀e:BasicGeometry. ∀A,B,P,Q,C,D:Point.
  (C ≠ D ⇒ Colinear(C;P;Q) ⇒ Colinear(D;P;Q) ⇒ geo-tar-opp-side(e;A;B;P;Q) ⇒ geo-tar-opp-side(e;A;B;C;D))
Proof
Definitions occuring in Statement : 
geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q), 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q), 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m
Lemmas referenced : 
colinear-lsep-general, 
euclidean-plane-subtype-oriented, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
geo-sep_wf, 
geo-lsep_wf, 
geo-colinear-symmetry, 
geo-sep-sym, 
lsep-all-sym, 
oriented-colinear-append, 
basic-geometry_wf, 
euclidean-plane_wf, 
oriented-plane_wf, 
cons_wf, 
geo-point_wf, 
nil_wf, 
lsep-implies-sep, 
cons_member, 
l_member_wf, 
geo-colinear-is-colinear-set, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-between_wf, 
geo-tar-opp-side_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
productIsType, 
universeIsType, 
functionIsType, 
independent_pairFormation, 
dependent_pairFormation_alt, 
inrFormation_alt, 
inlFormation_alt, 
equalityIstype, 
inhabitedIsType, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
lambdaEquality_alt
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,P,Q,C,D:Point.
    (C  \mneq{}  D
    {}\mRightarrow{}  Colinear(C;P;Q)
    {}\mRightarrow{}  Colinear(D;P;Q)
    {}\mRightarrow{}  geo-tar-opp-side(e;A;B;P;Q)
    {}\mRightarrow{}  geo-tar-opp-side(e;A;B;C;D))
Date html generated:
2019_10_16-PM-01_21_16
Last ObjectModification:
2018_12_11-PM-00_19_19
Theory : euclidean!plane!geometry
Home
Index