Nuprl Lemma : interior-point-cong-angle-transfer
∀g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z:Point.
  (abc < xyz
  ⇒ def ≅a xyz
  ⇒ (x # yz ∨ d # ef)
  ⇒ (∃p',d',f':Point. (d'ep' ≅a abc ∧ d'_p'_f' ∧ p' ≠ f' ∧ out(e ff') ∧ out(e dd'))))
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz, 
geo-out: out(p ab), 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-lt-angle: abc < xyz, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
geo-cong-angle: abc ≅a xyz, 
geo-cong-tri: Cong3(abc,a'b'c'), 
uiff: uiff(P;Q), 
cand: A c∧ B, 
squash: ↓T, 
true: True, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-out: out(p ab)
Lemmas referenced : 
cong-angle-out-exists-cong3, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
geo-lt-angle_wf, 
geo-point_wf, 
geo-out_weakening, 
geo-eq_weakening, 
geo-sep-sym, 
out-preserves-angle-cong_1, 
geo-congruent-between-exists, 
geo-congruent-iff-length, 
geo-between-symmetry, 
euclidean-plane-axioms, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-out_inversion, 
geo-between_wf, 
geo-sep_wf, 
geo-out_wf, 
geo-inner-five-segment, 
geo-add-length-between, 
geo-length-flip, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-add-length-comm, 
out-preserves-lsep, 
lsep-symmetry, 
lsep-all-sym, 
colinear-lsep, 
geo-colinear-permute, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
lsep-implies-sep, 
geo-between-sep, 
cong-tri-implies-cong-angle2, 
geo-cong-angle-transitivity, 
out-cong-angle, 
geo-between-out, 
geo-cong-angle-symm2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
unionIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
equalitySymmetry, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
equalityTransitivity, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
approximateComputation
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z:Point.
    (abc  <  xyz
    {}\mRightarrow{}  def  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  (x  \#  yz  \mvee{}  d  \#  ef)
    {}\mRightarrow{}  (\mexists{}p',d',f':Point.  (d'ep'  \mcong{}\msuba{}  abc  \mwedge{}  d'\_p'\_f'  \mwedge{}  p'  \mneq{}  f'  \mwedge{}  out(e  ff')  \mwedge{}  out(e  dd'))))
Date html generated:
2019_10_16-PM-01_51_07
Last ObjectModification:
2019_09_12-AM-11_35_36
Theory : euclidean!plane!geometry
Home
Index