Nuprl Lemma : straight-angle-sum1_symm
∀e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k:Point.  (abc + xyz ≅ ijk ⇒ x-y-z ⇒ out(b ac))
Proof
Definitions occuring in Statement : 
hp-angle-sum: abc + xyz ≅ def, 
geo-out: out(p ab), 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
hp-angle-sum: abc + xyz ≅ def, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
geo-cong-angle: abc ≅a xyz, 
cand: A c∧ B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
basic-geometry-: BasicGeometry-, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
geo-out: out(p ab), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
geo-sep-sym, 
angle-cong-preserves-straight-angle, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-strict-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
hp-angle-sum_wf, 
geo-point_wf, 
angle-cong-preserves-zero-angle, 
geo-out_transitivity, 
geo-out_inversion, 
geo-out-iff-between1, 
geo-strict-between-sep3, 
extended-out-preserves-between, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between-exchange4
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k:Point.    (abc  +  xyz  \mcong{}  ijk  {}\mRightarrow{}  x-y-z  {}\mRightarrow{}  out(b  ac))
Date html generated:
2019_10_16-PM-02_04_50
Last ObjectModification:
2019_06_24-AM-10_15_40
Theory : euclidean!plane!geometry
Home
Index