Nuprl Lemma : ip-congruent_functionality
∀[rv:InnerProductSpace]. ∀[a,b,c,d,a2,b2,c2,d2:Point].
  ({ab=cd 
⇐⇒ a2b2=c2d2}) supposing (d ≡ d2 and c ≡ c2 and b ≡ b2 and a ≡ a2)
Proof
Definitions occuring in Statement : 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
ip-congruent: ab=cd
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ip-congruent_wf, 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
ss-eq_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
req_functionality, 
rv-norm_functionality, 
rv-sub_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
because_Cache, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d,a2,b2,c2,d2:Point].
    (\{ab=cd  \mLeftarrow{}{}\mRightarrow{}  a2b2=c2d2\})  supposing  (d  \mequiv{}  d2  and  c  \mequiv{}  c2  and  b  \mequiv{}  b2  and  a  \mequiv{}  a2)
Date html generated:
2017_10_04-PM-11_56_39
Last ObjectModification:
2017_03_09-PM-05_36_19
Theory : inner!product!spaces
Home
Index