Nuprl Lemma : ip-congruent_functionality

[rv:InnerProductSpace]. ∀[a,b,c,d,a2,b2,c2,d2:Point].
  ({ab=cd ⇐⇒ a2b2=c2d2}) supposing (d ≡ d2 and c ≡ c2 and b ≡ b2 and a ≡ a2)


Proof




Definitions occuring in Statement :  ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q implies:  Q ip-congruent: ab=cd prop: rev_implies:  Q subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ip-congruent_wf req_witness rv-norm_wf rv-sub_wf inner-product-space_subtype real_wf rleq_wf int-to-real_wf req_wf rmul_wf rv-ip_wf ss-eq_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf req_functionality rv-norm_functionality rv-sub_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination applyEquality setElimination rename setEquality productEquality natural_numberEquality because_Cache independent_functionElimination instantiate independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d,a2,b2,c2,d2:Point].
    (\{ab=cd  \mLeftarrow{}{}\mRightarrow{}  a2b2=c2d2\})  supposing  (d  \mequiv{}  d2  and  c  \mequiv{}  c2  and  b  \mequiv{}  b2  and  a  \mequiv{}  a2)



Date html generated: 2017_10_04-PM-11_56_39
Last ObjectModification: 2017_03_09-PM-05_36_19

Theory : inner!product!spaces


Home Index