Nuprl Lemma : rv-ip-mul
∀[rv:InnerProductSpace]. ∀[a:ℝ]. ∀[x,y:Point].  (a*x ⋅ y = (a * x ⋅ y))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
ss-point: Point
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
rv-ip: x ⋅ y
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
inner-product-space: InnerProductSpace
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
rv-ip_wf, 
req_witness, 
sq_stable__req, 
exists_wf, 
int-to-real_wf, 
rless_wf, 
rv-0_wf, 
ss-sep_wf, 
rmul_wf, 
rv-mul_wf, 
radd_wf, 
rv-add_wf, 
req_wf, 
ss-eq_wf, 
all_wf, 
real_wf, 
real-vector-space_subtype1, 
ss-point_wf, 
subtype_rel_self
Rules used in proof : 
dependent_functionElimination, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
productElimination, 
independent_functionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
Error :applyLambdaEquality, 
rename, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
setEquality, 
isectElimination, 
extract_by_obid, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a:\mBbbR{}].  \mforall{}[x,y:Point].    (a*x  \mcdot{}  y  =  (a  *  x  \mcdot{}  y))
Date html generated:
2016_11_08-AM-09_14_56
Last ObjectModification:
2016_10_31-PM-04_26_37
Theory : inner!product!spaces
Home
Index