Nuprl Lemma : rv-isometry-compose
∀[rv:InnerProductSpace]. ∀[f,g:Point ⟶ Point].  (Isometry(f o g)) supposing (Isometry(g) and Isometry(f))
Proof
Definitions occuring in Statement : 
rv-isometry: Isometry(f), 
inner-product-space: InnerProductSpace, 
ss-point: Point, 
compose: f o g, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
implies: P ⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
compose: f o g, 
rv-isometry: Isometry(f), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req_weakening, 
req_functionality, 
rv-isometry_wf, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
rv-ip_wf, 
req_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
ss-point_wf, 
compose_wf, 
inner-product-space_subtype, 
rv-sub_wf, 
rv-norm_wf, 
req_witness
Rules used in proof : 
productElimination, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
independent_functionElimination, 
natural_numberEquality, 
productEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f,g:Point  {}\mrightarrow{}  Point].
    (Isometry(f  o  g))  supposing  (Isometry(g)  and  Isometry(f))
Date html generated:
2016_11_08-AM-09_20_20
Last ObjectModification:
2016_11_02-PM-11_27_26
Theory : inner!product!spaces
Home
Index