Nuprl Lemma : rv-isometry-injective
∀[rv:InnerProductSpace]. ∀f:Point ⟶ Point. (Isometry(f) ⇒ (∀x,y:Point.  (f x ≡ f y ⇒ x ≡ y)))
Proof
Definitions occuring in Statement : 
rv-isometry: Isometry(f), 
inner-product-space: InnerProductSpace, 
ss-eq: x ≡ y, 
ss-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rv-isometry: Isometry(f), 
false: False, 
not: ¬A, 
ss-eq: x ≡ y, 
guard: {T}, 
prop: ℙ, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req_weakening, 
req_functionality, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
rv-ip_wf, 
req_wf, 
rv-norm_wf, 
ss-sep_wf, 
rv-isometry_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
ss-eq_wf, 
rv-sub_wf, 
rv-norm-is-zero, 
ss-point_wf, 
inner-product-space_subtype, 
rv-sub-is-zero
Rules used in proof : 
natural_numberEquality, 
productEquality, 
setEquality, 
rename, 
setElimination, 
voidElimination, 
dependent_functionElimination, 
lambdaEquality, 
functionEquality, 
instantiate, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point  {}\mrightarrow{}  Point.  (Isometry(f)  {}\mRightarrow{}  (\mforall{}x,y:Point.    (f  x  \mequiv{}  f  y  {}\mRightarrow{}  x  \mequiv{}  y)))
Date html generated:
2016_11_08-AM-09_18_27
Last ObjectModification:
2016_11_02-PM-11_39_01
Theory : inner!product!spaces
Home
Index