Nuprl Lemma : rv-mul-sep-zero
∀rv:InnerProductSpace. ∀t:ℝ. ∀x:Point.  (t*x # 0 ⇐⇒ x # 0 ∧ (r0 < |t|))
Proof
Definitions occuring in Statement : 
inner-product-space: InnerProductSpace, 
rv-mul: a*x, 
rv-0: 0, 
rless: x < y, 
rabs: |x|, 
int-to-real: r(n), 
real: ℝ, 
ss-sep: x # y, 
ss-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
guard: {T}, 
uimplies: b supposing a, 
or: P ∨ Q, 
false: False, 
cand: A c∧ B
Lemmas referenced : 
zero-rleq-rabs, 
rv-norm-positive-iff, 
rv-mul_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-0_wf, 
rless_wf, 
int-to-real_wf, 
rabs_wf, 
ss-point_wf, 
real_wf, 
rv-norm_wf, 
rleq_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
rmul-is-positive, 
rless_transitivity1, 
rless_irreflexivity, 
rless_transitivity2, 
rless_functionality, 
req_weakening, 
rv-norm-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
productEquality, 
natural_numberEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
unionElimination, 
voidElimination, 
inlFormation
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}t:\mBbbR{}.  \mforall{}x:Point.    (t*x  \#  0  \mLeftarrow{}{}\mRightarrow{}  x  \#  0  \mwedge{}  (r0  <  |t|))
Date html generated:
2017_10_04-PM-11_51_51
Last ObjectModification:
2017_06_26-PM-09_10_12
Theory : inner!product!spaces
Home
Index