Nuprl Lemma : rv-mul-sep2

rv:RealVectorSpace. ∀a:ℝ. ∀x,y:Point.  (a*x a*y  y)


Proof




Definitions occuring in Statement :  rv-mul: a*x real-vector-space: RealVectorSpace ss-sep: y ss-point: Point real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a and: P ∧ Q squash: T less_than: a < b nat_plus: + false: False sq_exists: x:{A| B[x]} rless: x < y rneq: x ≠ y or: P ∨ Q subtype_rel: A ⊆B uall: [x:A]. B[x] prop: implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermConstant_wf itermVar_wf itermAdd_wf intformless_wf satisfiable-full-omega-tt nat_plus_properties real-vector-space_wf real_wf ss-point_wf rv-mul_wf real-vector-space_subtype1 ss-sep_wf rv-mul-sep
Rules used in proof :  independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality productElimination imageElimination rename setElimination unionElimination because_Cache sqequalRule applyEquality isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}a:\mBbbR{}.  \mforall{}x,y:Point.    (a*x  \#  a*y  {}\mRightarrow{}  x  \#  y)



Date html generated: 2016_11_08-AM-09_13_45
Last ObjectModification: 2016_11_02-PM-00_48_10

Theory : inner!product!spaces


Home Index