Nuprl Lemma : rv-mul-sep2
∀rv:RealVectorSpace. ∀a:ℝ. ∀x,y:Point.  (a*x # a*y 
⇒ x # y)
Proof
Definitions occuring in Statement : 
rv-mul: a*x
, 
real-vector-space: RealVectorSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
top: Top
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
false: False
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformless_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
real-vector-space_wf, 
real_wf, 
ss-point_wf, 
rv-mul_wf, 
real-vector-space_subtype1, 
ss-sep_wf, 
rv-mul-sep
Rules used in proof : 
independent_functionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
imageElimination, 
rename, 
setElimination, 
unionElimination, 
because_Cache, 
sqequalRule, 
applyEquality, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}a:\mBbbR{}.  \mforall{}x,y:Point.    (a*x  \#  a*y  {}\mRightarrow{}  x  \#  y)
Date html generated:
2016_11_08-AM-09_13_45
Last ObjectModification:
2016_11_02-PM-00_48_10
Theory : inner!product!spaces
Home
Index