Nuprl Lemma : rv-sub-add
∀[rv:InnerProductSpace]. ∀[x,v:Point].  x - v + v ≡ x
Proof
Definitions occuring in Statement : 
rv-sub: x - y, 
inner-product-space: InnerProductSpace, 
rv-add: x + y, 
ss-eq: x ≡ y, 
ss-point: Point, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rv-sub: x - y, 
ss-eq: x ≡ y, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-add_wf, 
rv-sub_wf, 
ss-point_wf, 
ss-eq_wf, 
rv-minus_wf, 
rv-0_wf, 
ss-eq_weakening, 
uiff_transitivity, 
ss-eq_functionality, 
ss-eq_transitivity, 
ss-eq_inversion, 
rv-add-assoc, 
rv-add_functionality, 
rv-add-minus, 
rv-0-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,v:Point].    x  -  v  +  v  \mequiv{}  x
Date html generated:
2017_10_04-PM-11_51_25
Last ObjectModification:
2017_06_21-AM-11_53_09
Theory : inner!product!spaces
Home
Index