Nuprl Lemma : ss-free-homotopic_weakening
∀X:SeparationSpace. ∀a,b:Point(X).  ss-free-homotopic(X;a;b) supposing a ≡ b
Proof
Definitions occuring in Statement : 
ss-free-homotopic: ss-free-homotopic(X;a;b), 
ss-eq: x ≡ y, 
ss-point: Point(ss), 
separation-space: SeparationSpace, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
ss-eq: x ≡ y, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
ss-free-homotopic: ss-free-homotopic(X;a;b), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
path-at: p@t, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
prop: ℙ
Lemmas referenced : 
ss-eq_inversion, 
ss-eq_functionality, 
ss-eq_weakening, 
ss-eq_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq-int, 
istype-false, 
rleq_wf, 
ss-point_wf, 
separation-space_wf, 
path-ss-point, 
real_wf, 
unit-ss_wf, 
unit_ss_point_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
dependent_pairFormation_alt, 
extract_by_obid, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
productElimination, 
productIsType, 
universeIsType, 
isectElimination, 
Error :memTop, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
setIsType, 
functionIsType, 
applyEquality
Latex:
\mforall{}X:SeparationSpace.  \mforall{}a,b:Point(X).    ss-free-homotopic(X;a;b)  supposing  a  \mequiv{}  b
Date html generated:
2020_05_20-PM-01_20_26
Last ObjectModification:
2020_02_08-AM-11_41_37
Theory : intuitionistic!topology
Home
Index