Nuprl Lemma : ss-prod-prod
∀[X,Y,Z:SeparationSpace].  ss-homeo(X × Y × Z;X × Y × Z)
Proof
Definitions occuring in Statement : 
ss-homeo: ss-homeo(X;Y), 
prod-ss: ss1 × ss2, 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
ss-function: ss-function(X;Y;f), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
ss-point: Point(ss), 
record-select: r.x, 
prod-ss: ss1 × ss2, 
mk-ss: Point=P #=Sep cotrans=C, 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
rev_uimplies: rev_uimplies(P;Q), 
pi1: fst(t), 
pi2: snd(t), 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
ss-homeo: ss-homeo(X;Y), 
exists: ∃x:A. B[x], 
ss-ap: f(x), 
ss-eq: x ≡ y, 
not: ¬A, 
false: False
Lemmas referenced : 
ss-fun-point, 
prod-ss-point, 
ss-point_wf, 
prod-ss-eq, 
prod-ss_wf, 
subtype_rel_self, 
iff_weakening_uiff, 
ss-eq_wf, 
pi2_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
ss-function_wf, 
separation-space_wf, 
ss-sep_wf, 
ss-ap_wf, 
all_wf, 
exists_wf, 
ss-fun_wf, 
ss-eq_weakening, 
iff_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
lambdaEquality, 
spreadEquality, 
hypothesisEquality, 
independent_pairEquality, 
productEquality, 
lambdaFormation, 
productElimination, 
independent_isectElimination, 
applyEquality, 
independent_pairFormation, 
promote_hyp, 
dependent_pairEquality, 
independent_functionElimination, 
functionEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[X,Y,Z:SeparationSpace].    ss-homeo(X  \mtimes{}  Y  \mtimes{}  Z;X  \mtimes{}  Y  \mtimes{}  Z)
Date html generated:
2020_05_20-PM-01_20_05
Last ObjectModification:
2018_08_31-AM-00_26_59
Theory : intuitionistic!topology
Home
Index