Nuprl Lemma : bfs-reduce-strong-subtype-iff

[K:RngSig]. ∀[S,T:Type].
  ∀[as,bs:basic-formal-sum(K;S)].  (bfs-reduce(K;T;as;bs) ⇐⇒ bfs-reduce(K;S;as;bs)) supposing strong-subtype(S;T)


Proof




Definitions occuring in Statement :  bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B prop: rev_implies:  Q guard: {T}
Lemmas referenced :  strong-subtype_witness bfs-reduce-strong-subtype bfs-reduce_wf basic-formal-sum-subtype bfs-reduce-subtype1 basic-formal-sum_wf strong-subtype_wf istype-universe rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename independent_pairFormation lambdaFormation_alt independent_isectElimination universeIsType applyEquality productElimination sqequalRule inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[as,bs:basic-formal-sum(K;S)].    (bfs-reduce(K;T;as;bs)  \mLeftarrow{}{}\mRightarrow{}  bfs-reduce(K;S;as;bs)) 
    supposing  strong-subtype(S;T)



Date html generated: 2019_10_31-AM-06_29_24
Last ObjectModification: 2019_08_15-PM-04_45_27

Theory : linear!algebra


Home Index