Nuprl Lemma : vs-lift-inc

[S:Type]. ∀[K:Rng]. ∀[s:S]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;<s>(f s) ∈ Point(vs))


Proof




Definitions occuring in Statement :  free-vs-inc: <s> vs-lift: vs-lift(vs;f;fs) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] comm: Comm(T;op) ident: Ident(T;op;id) implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True infix_ap: y assoc: Assoc(T;op) monoid_p: IsMonoid(T;op;id) cand: c∧ B and: P ∧ Q uimplies: supposing a rng: Rng prop: squash: T vs-bag-add: Σ{f[b] b ∈ bs} vs-lift: vs-lift(vs;f;fs) free-vs-inc: <s> member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-mul-one rng_one_wf vs-mul_wf rng_car_wf vs-add-comm vs-mon_ident iff_weakening_equal vs-mon_assoc vs-0_wf vs-add_wf bag-summation-single vs-point_wf true_wf squash_wf equal_wf
Rules used in proof :  dependent_functionElimination functionEquality universeEquality functionExtensionality spreadEquality cumulativity productEquality independent_pairEquality axiomEquality isect_memberEquality independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality sqequalRule independent_pairFormation independent_isectElimination rename setElimination because_Cache equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:Rng].  \mforall{}[s:S].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].    (vs-lift(vs;f;<s>)  =  (f  s))



Date html generated: 2018_05_22-PM-09_46_19
Last ObjectModification: 2018_01_09-PM-00_27_56

Theory : linear!algebra


Home Index