Nuprl Lemma : bag-summation-single

[R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R].
  ∀[T:Type]. ∀[f:T ⟶ R]. ∀[a:T].  (x∈{a}). f[x] f[a] ∈ R) supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] single-bag: {x} comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) infix_ap: y prop:
Lemmas referenced :  bag-summation-single-sq istype-void monoid_p_wf comm_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality_alt voidElimination hypothesis isect_memberFormation_alt productElimination applyEquality hypothesisEquality universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsType productIsType because_Cache instantiate universeEquality

Latex:
\mforall{}[R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].
    \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  R].  \mforall{}[a:T].    (\mSigma{}(x\mmember{}\{a\}).  f[x]  =  f[a]) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2019_10_15-AM-11_00_42
Last ObjectModification: 2019_08_13-PM-00_01_48

Theory : bags


Home Index